31 research outputs found

    Erasing the orbital angular momentum information of a photon

    Full text link
    Quantum erasers with paths in the form of physical slits have been studied extensively and proven instrumental in probing wave-particle duality in quantum mechanics. Here we replace physical paths (slits) with abstract paths of orbital angular momentum (OAM). Using spin-orbit hybrid entanglement of photons we show that the OAM content of a photon can be erased with a complimentary polarization projection of one of the entangled pair. The result is the (dis)appearance of azimuthal fringes based on whether the \which-OAM" information was erased. We extend this concept to a delayed measurement scheme and show that the OAM information and fringe visibility are complimentary

    Hybrid entanglement for quantum communication

    Get PDF
    A dissertation submitted to the Faculty of Science in partial fulfillment of the requirements for the Degree of Master of Science School of Physics University of Witwatersrand November 1, 2017The generation and detection of entangled photons is a topic of interest in quantum communication. With current state-of-the-art methods it is possible to manipulate any degree of freedom (DoF) of photons, e.g, polarisation, transverse momentum, orbital angular momentum and energy. Furthermore, it is possible to combine these DoF to realise hybrid entanglement { entanglement between the DoF of photons. In this dissertation we focus on hybrid entanglement between photon states of coupled orbital angular momentum and polarisation. We engineer hybrid-entanglement using geometric phase control between spatially separated photons produced from spontaneous parametric down conversion. We present a new type of quantum eraser that does not rely on physical path interference. We show that in principle any other degree of freedom can be used and demonstrate this e ectively through polarisation control. The use of high dimensional hybrid photon states in quantum communication, particularly in quantum cryptography, is still in its infancy. Here we tailor photon states that are coupled in their polarisation and spatial DoF (orbital angular momentum) to realise high dimensional encoding alphabets. We show how photons entangled in their internal DoF can be generated and deterministically detected. We exploit them in a demonstration of a high dimensional quantum key distribution protocol and show that our scheme generates secure keys at high rates.MT 201

    Creation and characterization of vector vortex modes for classical and quantum communication

    Full text link
    Vector vortex beams are structured states of light that are non-separable in their polarisation and spatial mode, they are eigenmodes of free-space and many fibre systems, and have the capacity to be used as a modal basis for both classical and quantum communication. Here we outline recent progress in our understanding of these modes, from their creation to their characterization and detection. We then use these tools to study the propagation behaviour of such modes in free-space and optical fibre and show that modal cross-talk results in a decay of vector states into separable scalar modes, with a concomitant loss of information. We present a comparison between probabilistic and deterministic detection schemes showing that the former, while ubiquitous, negates the very benefit of increased dimensionality in quantum communication while reducing signal in classical communication links. This work provides a useful introduction to the field as well as presenting new findings and perspectives to advance it further

    Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states

    Get PDF
    Using spatial modes for quantum key distribution (QKD) has become highly topical due to their infinite dimensionality, promising high information capacity per photon. However, spatial distortions reduce the feasible secret key rates and compromise the security of a quantum channel. In an extreme form such a distortion might be a physical obstacle, impeding line-of-sight for free-space channels. Here, by controlling the radial degree of freedom of a photon's spatial mode, we are able to demonstrate hybrid high-dimensional QKD through obstacles with self-reconstructing single photons. We construct high-dimensional mutually unbiased bases using spin-orbit hybrid states that are radially modulated with a non-diffracting Bessel-Gaussian (BG) profile, and show secure transmission through partially obstructed quantum links. Using a prepare-measure protocol we report higher quantum state self-reconstruction and information retention for the non-diffracting BG modes as compared to Laguerre-Gaussian modes, obtaining a quantum bit error rate (QBER) that is up to 3 times lower. This work highlights the importance of controlling the radial mode of single photons in quantum information processing and communication as well as the advantages of QKD with hybrid states.Comment: Published version, 15 pages, 6 figures, 2 table

    A robust basis for multi-bit optical communication with vectorial light

    Full text link
    Increasing the information capacity of communication channels is a pressing need, driven by growing data demands and the consequent impending data crunch with existing modulation schemes. In this regard, mode division multiplexing (MDM), where the spatial modes of light form the encoding basis, has enormous potential and appeal, but is impeded by modal noise due to imperfect channels. Here we overcome this challenge by breaking the existing MDM paradigm of using the modes themselves as a discrete basis, instead exploiting the polarization inhomogeneity (vectorness) of vectorial light as our information carrier. We show that this encoding basis can be partitioned and detected almost at will, and measured in a channel independent fashion, a fact we confirm experimentally using atmospheric turbulence as a highly perturbing channel example. Our approach replaces conventional amplitude modulation with a novel modal alternative for potentially orders of magnitude channel information enhancement, yet is robust to fading even through noisy channels, offering a new paradigm to exploiting the spatial mode basis for optical communication.Comment: 15 pages, 8 figure
    corecore